Looking for work.
Photo credit: theFreesheet/Google ImageFX

A new artificial intelligence system has demonstrated the ability to predict labour market shocks up to two weeks before government statistics by analysing the “digital traces” of job seekers on social media.

The study, published in PNAS Nexus, reveals that the “JoblessBERT” model can identify subtle signals of economic distress — including slang and misspelt posts — that traditional rule-based systems miss. By processing data from 31.5 million X (formerly Twitter) users, the system outperforms professional forecasters and provides critical early warnings during economic crises.

“This episode epitomises that timely and disaggregated information about the labour market is vital for economic well-being,” the authors note.

Stress tests

The system’s capabilities were starkly illustrated during the onset of the COVID-19 pandemic, a period the authors describe as a “stress test” for forecasting models. In the week ending 21 March 2020, professional consensus models predicted just 327,200 unemployment claims, completely missing the magnitude of the unfolding crisis.

In contrast, JoblessBERT detected a substantial surge in unemployment disclosures, forecasting 2.66 million claims — a figure that closely mirrored the government’s actual 2.9 million claims released days later.

Unlike previous attempts to track unemployment via social media, which relied on rigid keyword lists, JoblessBERT uses a fine-tuned transformer model trained via “Active Learning”. This approach enables the system to understand context and capture 13 times as many relevant users as rule-based models.

Signs of distress

The model successfully identifies non-standard expressions of distress such as “needa job” or “neeeeeed a job”, which standard tools typically ignore.

To ensure accuracy, the researchers applied “post-stratification” techniques to adjust the data for the platform’s skewed demographics. While social media users do not perfectly represent the general population, the model reweights inputs based on inferred age, gender and location to align with US Census Bureau estimates.

The result is a 54.3 per cent reduction in forecasting errors compared to industry baselines. The researchers also demonstrated that the model performs at the subnational level, accurately tracking unemployment trends across individual states and cities, where official data are often delayed or irregular.

Leave a Reply

Your email address will not be published. Required fields are marked *

You May Also Like

New theory suggests AI may never be conscious without ‘biological’ chips

The debate over whether Artificial Intelligence can ever truly be conscious has…

You can swear by it: Turning the air blue makes you stronger, psychologists find

Unleashing a string of expletives might be the secret to hitting a…

Super Mario Bros. prescribed as ‘potent antidote’ for adults suffering burnout

Replaying familiar video games like Super Mario Bros. and Yoshi may help…

AI fuels boom in scientific papers but floods journals with ‘mediocre’ research

Artificial intelligence is helping scientists write papers faster than ever before, but…

‘Feral’ AI chatbots are spreading shame and destroying reputations

Artificial intelligence is evolving into a “feral” gossip machine capable of ruining…

New AI personality test reveals chatbots can be programmed with ‘psychosis’

Researchers have developed the first scientifically validated framework to measure the “personality”…